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A B S T R A C T

This study investigates the effects of PM10 concentration on tourism and recreational sales revenues through the
case of Seoul, South Korea, from 2015 to 2017, using a twofold generalized additive modeling strategy. The
finding confirms that PM10 exerts differing influences on such sales revenue by level. People begin to alter their
consumption only after the PM10 level becomes worse than the “Bad” level. In the case of the present day's PM10
level, up to 41 μg/m3 and 109 μg/m3, respectively, each 10 μg/m3 increase is associated with an incremental
increase of sales revenue by 3.8% and by 0.3%; thereafter, the same increase is associated with an incremental
decrease of sales revenue by −1.2%. A similar pattern is observed for the two-day lag of the PM10 level. Well-
balanced standards should be sought to ensure a maximum level of health safety and not depress tourism
businesses and industries.

1. Introduction

Particulate matter (PM) refers to particles suspended in the air. It is
composed of liquid and solid components ranging widely from chemi-
cals, elemental carbon, and mineral and metals to organic or biological
particles (World Health Organization (WHO), 2016; WHO, 2013). In
general, PM is categorized into two classes based on size; the coarser
category, called PM10, has a maximum aerodynamic diameter of 10 μm,
while the maximum diameter of the finer category, called PM2.5, is
2.5 μm (Kim, Kabir, & Kabir, 2015). Anthropogenic sources of PM in-
clude combustion of fuel for industrial and household uses and dust-
generating operations at manufacturing, construction, transportation,
and agricultural sites. Natural sources include natural hazards such as
volcano eruptions, dust storms, and forest fires (Kim et al., 2015; WHO,
2013).

The increasing concentration of PM and its harmful effects on
human health have brought worldwide attention. Exposure to PM has
been recognized as a direct or indirect cause of premature or excess
mortality (Atkinson, Fuller, Anderson, Harrison, & Armstrong, 2010;
Hu et al., 2017a,b; Pascal et al., 2013). The commonly vulnerable parts
of the human body are the cardiovascular and respiratory systems
(WHO, 2006; Pascal et al., 2013; Garrett & Casimiro, 2011): approxi-
mately 3% of cardiopulmonary and 5% of lung cancer deaths have been
attributed to exposure to PM globally (Cohen et al., 2004). Conse-
quently, reduction of PM concentration would lead to increasing life

expectancy between 0.35 and 1.37 years per 10 μg/m3, depending on
the country considered (Krewski, 2009).

Research on other impacts of PM has been less extensive than that
conducted on the human health effects. The revealed economic impact
of air pollution has not been comprehensive; rather, it is limited to the
welfare costs incurred as a result of damaged health, such as healthcare
costs and hospital expenditure, the value of human life, and the loss of
labor productivity (Matus et al., 2012; Vrontisi, Abrell, Neuwahl,
Saveyn, & Wagner, 2016). Plant physiologists have documented the
harmful effects of gaseous pollutants, such as ozone, nitrogen dioxide,
and sulfur dioxide, on crops and forests. Similar effects have been ob-
served for PM; it would acidify soil and water sources and reduce the
fertility of agricultural land (Agrawal, Rajput & Bell, 2003; Honour,
Bell, Ashenden, Cape, & Power, 2009; Sett, 2017).

The impact of PM on other economic sectors, especially those in-
volving human behaviors and activities, are less well studied. Tourism
is one sector in which such research has been more frequently con-
ducted, and it has become evident that tourists perceive PM as posing
potential health risk or reduced utility and alter their travel plans (Looi
& Anaman, 2000; Poudyal, Paudel, & Green, 2013; Qi, Gibson, & Zhang,
2009; Zhang, Zhong, Xu, Wang, & Dang, 2015). From this relevant
literature, we can easily deduce that tourists and residents might alter
their detailed plans and schedules and refrain from going out on a day
of high PM concentration. This behavioral pattern would affect their
consumption activities and perhaps lead to a significant economic
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disadvantage for retailers. While health problems occur occasionally
and for a specific portion of the population, behavioral changes are
more frequent and more sensitive reactions to PM among the general
population. In spite of this magnitude, however, questions remain
about how PM levels influence consumption patterns in the tourism and
recreational sectors in an urban context.

Against this backdrop, we investigate the relationship between re-
tail revenues and the level of PM10, in the context of Seoul, South Korea
for about two years from 2015 to 2017, using the time-series
Generalized Additive Model (GAM). This research is the first attempt to
decipher the effect of PM on tourism and the recreational retail in-
dustry. The level of PM in Korea has been continuously high, ranked as
the first among 34 OECD member countries as of 2015 (Ministry of the
Environment, 2016), or fifth among 178 countries in the world as of
2018 (Yale Center of International Law & Policy, 2018), justifying the
site selection. We limited our analysis to restaurants and recreational
businesses. Those businesses are the most ubiquitous retail trades in
Seoul, and their sales revenue most promptly responds to various ex-
ternal factors beyond managerial control, such as market trends, gov-
ernment policies, seasonality, weather, and perhaps air quality
(Camillo, Connolly, & Kim, 2008; Parsa, Self, Njite, & King, 2005). We
excluded the accommodation businesses from the analysis, since daily
PM level is almost unpredictable and would not prevent tourists from
coming to the study site. Once they visit the city, they must pay for
accommodations.

The rest of the text is structured as follows: the next section provides
a brief background of PM issues in Seoul, South Korea and a review of
PM-related studies. Analytical design and method are explained, fol-
lowed by the results. The conclusion discusses policy implications.

2. Background and literature review

2.1. PM in Seoul, South Korea

In South Korea, the government began recognizing PM as one of the
main air pollutants and established quality standards in 1995 (National
Institute of Environmental Research, 2013). In most of the cities, the
annual average levels of PM10 and PM2.5 have substantially exceeded
what is recommended by WHO: 20 and 10 μg/m3, respectively. For
example, in the seven major cities, such levels were 44.43 and
24.29 μg/m3, respectively, in 2016 (National Institute of Environmental
Research, 2017). Compared to other world cities, Seoul's PM level is
higher by a large margin. As of 2014, the annual average PM10level of
Seoul is 46 μg/m3, which is 1.5, 2.1, and 2.3 times higher than that of
Los Angeles, Paris, and London, respectively. The reasons may be found
in the high population density and the intense urbanization/in-
dustrialization that Korean cities have undergone. In addition, high
atmospheric pressure formed around the Korean peninsula causes air
congestion and accumulates PM in the region (Ministry of the
Environment, 2016). Particularly in the Asian dust season, mainly in
winter and spring, movement of yellow dust from the central Asian
deserts is recognized as a major source of PM. Along the length of that
long-range transportation, particles larger than 10 μm are dropped near
the origin and those of smaller size continue farther to drop in Korea
(Chun, Boo, Kim, Park, & Lee, 2001; Park et al., 2005). This pattern has
substantially exacerbated the air quality problems of the country
(Ahmed, Shon & Song, 2015).

In response to nationwide concerns, the Ministry of the
Environment began reporting the level of PM through various media,
such as TV, radio, websites, mobile applications, and text messages to
inform citizens and minimize their exposure. Many people check the
level of PM using smartphone applications (Ministry of the
Environment, 2016). For PM10, four grades are reported; Good (from 0
to 30 μg/m3), Normal (from 31 to 80), Bad (from 81 to 150), and Very
Bad (over 151 μg/m3). When the levels exceed 150 μg/m3 or 300 μg/m3

continuously for more than two hours, public agencies and

municipalities issue a watch or an alert, respectively. They also re-
commend reducing or avoiding outdoor activities in areas of high pe-
destrian and traffic volume. Public outdoor sports facilities are closed or
posted with warning notices to discourage use. Schools are allowed to
cancel physical education classes or shorten class time at their discre-
tion (Ministry of the Environment, 2016).

2.2. Effects of PM

Negative effects of PM have been studied, and a large portion of the
research investigates effects on human health. Two main strands con-
stitute the majority of the research: cohort studies tracing the effects of
long-term exposure and cross-sectional studies estimating the short-
term effects.

For assessing the long-term effects, it is common to use hazard
modeling with the number of deaths or disease outbreaks as the de-
pendent variable. A 12-year cohort study, using a measured value of PM
from the nearest monitoring station, reveals that the 3.4%–6.0% rise in
lung cancer mortality is explained by the increment of PM10 by 10 μg/
m3 in China (Chen et al., 2016). A 19-year study in China has found
similar results, using annual average levels estimated through remote
sensing and global chemical transport models, in that the same increase
of PM2.5 is associated with the hazard ratio of 1.06 for urbanites (Guo
et al., 2016). Seventeen cohort studies for nine European countries with
an average study period of 12.8 years, using measured PM levels with
nine monitoring stations and addressing spatial variation among re-
gions with land use regression, also suggest a statistically significant
relationship between the PM10 and lung cancer incidence with a hazard
ratio of 1.22 (Raaschou-Nielsen et al., 2013). Another meta-analysis of
22 European cohort studies, following up to a 13.9-year period, sug-
gests an increased hazard ratio of 1.07 per 5 μg/m3 increase of PM2.5
(Beelen et al., 2014). The result of a 25-year follow-up study conducted
in France agrees with the aforementioned studies, in that hazard ratio
of 1.09 for non-accidental mortality is associated with a PM10 increment
of 2.2 μg/m3. In this analysis, the CHIMERE chemistry-transportation
model was used to recalculate the initial pollution level at 50-km re-
solution for European scale to 10-km resolution national scale, then
mesh-refinement was applied to scale it down to 2-km resolution, using
land cadaster and road network data (Bentayeb et al., 2015).

In assessing short-term effects, the generalized linear model (GLM)
and GAM have frequently been used to address the distinct relation-
ships between the count-based health-related dependent variables and
the independent variables, which are convoluted and nonlinear in their
effects (Dominici, McDermott, Zeger, & Samet, 2002). The dependent
variables are more diverse, and include the count of disease outbreaks,
the number of hospital admissions, the rates of mortality and morbidity,
and life expectancy. Studies using GAM with Poisson distribution, with
measured air pollution data from local monitoring stations, found that
10 μg/m3 increases in PM10 and PM2.5 are associated with the rise of
mortality by 7.2% and 5.1%, respectively, during the summer in nine
French cities (Pascal et al., 2014). A study in Lisbon, Portugal, using
measured air pollution data from the Portuguese Environmental
Agency, showed a 2.39% incremental increase of elderly cardiovascular
mortality with a 10 μg/m3 increase of PM2.5 (Garrett & Casimiro, 2011).
Studies often consider a time lag between the day of a high PM level
and such health effects. A study investigating Austrian urban and rural
areas, using measured air pollution data from one monitoring station at
each site, suggested a 4.2% incremental increase per 10 μg/m3 in the
number of elderly persons admitted to hospitals due to respiratory
symptoms after 2 and 10 days of high PM10 (Neuberger et al., 2004). A
spatial analysis, conducted in Taiwan, reaffirmed the aforementioned
results, in that an area that underwent a typhoon-triggered landslide
had a significantly higher prevalence of pediatric pneumonia (by at
least 2%) than an area of different conditions (Tu & Chen, 2017).

Beyond epidemiology, studies of PM effects have looked at tourism.
Perceived threats to health or reduced satisfaction with travel could
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affect tourists’ intention to visit certain sites. A time-series analysis on
Great Smoky Mountain National Park, U.S., suggested that visibility
conditions caused by air pollution influenced the number of visitors.
Consequently, a 10% improvement of visibility would attract one mil-
lion more visitors a year (Poudyal et al., 2013). Another time-series
analysis, using daily averaged, measured pollution level data including
PM10 and PM2.5, analyzed with a Markov regime-switching model, sug-
gested that the number of travelers to Sun Moon Lake in Taiwan de-
creased by 25,725 people a month for days of “Bad” air quality in the
peak season (Chen, Lin, & Hsu, 2017). A study conducted in China,
using a panel analysis of the number of tourists and the daily air-quality
measurements in 11 cities, suggested that low air quality in the place of
origin increased outbound tourism demand (Wang, Fang, & Law, 2018).
In some studies, the basic premise for the relationship between the PM
and outcome is reversed; it is believed that tourism activities are one of
the sources of high PM concentration. Thus, on a day with a large
number of tourists, the PM level becomes higher, rather than higher
concentration of PM reducing the number of tourists. Using GAM with
daily stock of people and observed value of air quality from two
monitoring stations from the two cities, a study revealed that a 1%
increase of tourists explains up to a 0.45% incremental increase of PM10
concentration level in Mallorca, Spain (Saenz-de-Miera & Rosselló,
2014).

The level of PM also affects other types of outdoor activities. A
multilevel study investigating adults in the U.S. and linking their phy-
sical activities and the level of PM2.5 proved that a 1 μg/m3 increase in
monthly average PM was associated with an increase of the odds of
physical inactivity by 0.46%. To acquire a country-level PM con-
centration for nine years, the authors used modeled data using ground-
level observed value and satellite imagery (An & Xiang, 2015). Using
personal data collected from mobile exercise applications and multi-
variate analyses of variance, a study confirmed that a smaller number of
people exercised on a day of bad air pollution, while the average
duration of the exercise was unaffected for people who were already
out for exercise (Hu et al., 2017a,b). A panel study conducted in Beijing,
China, for college students concurred with the other studies, in that a
PM2.5 concentration higher by one standard deviation was associated
with decreased outdoor activities, such as 7.3 min less walking,
10.1 min less vigorous exercise, and an increase of sleeping time by
1.07 h per week. The PM2.5 level was measured at the monitoring station
in the U.S. Embassy in Beijing (An & Yu, 2018).

2.3. PM data

The aforementioned literature necessitates air-quality data accurate
enough to assess effects on health conditions on human behaviors. Four
types of data-producing procedures have been widely used for exposure
assessment: 1) measured data, 2) spatial interpolation, 3) regression
modeling, and 4) air-quality or dispersion modeling.

Observed values have been most commonly employed for such
studies (Jiang & Yoo, 2018; Sarnat et al., 2010). If monitoring networks
are dense, a higher spatiotemporal resolution is consequently available
even without modeling simulations and interpolations. In particular,
near the monitoring stations, a measured value best reflects the actual
exposure to air pollution (Bravo, Fuentes, Zhang, Burr, & Bell, 2012;
Sarnat et al., 2006). The definition of “near” varies among studies, but
it generally means locations where the monitored level of the pollutants
extends homogeneously. Spatial homogeneity is expected in the dis-
tribution of particles rather than gaseous pollutants, in areas with re-
gional secondary sources (Bell, Ebisu, & Peng, 2011; Jiang & Yoo,
2018). Ozone and PM are considered spatially homogeneous pollutants,
but the exact extent of homogeneity has not been confirmed
(Lippmann, Ito, Nadas, & Burnett, 2000). Röösli et al. suggested an
extremely low spatial variability of PM10 in one of the urban areas in
Swaziland, called Basel, monitored at 6 sites within its 36 km2 area
(2000). Sarnat et al. suggested that, in an urban context, associations

between exposure and a health outcome would be robust if the distance
between the monitoring station and the subject was less than 20 miles
(2010). In Korea, spatial heterogeneity of PM has not been observed if
the maximum distance from a monitoring station to a subject is 30 km
(Son, Bell, & Lee, 2010). For the same reasons, exposure assessment
farther from the monitoring station would be less accurate.

Second, using spatially interpolated data has been recommended
when a monitoring network has a limited spatial and temporal coverage
(Holland et al., 2003, pp. 31–35; Wong, Yuan, & Perlin, 2004). The idea
of this strategy is to assign a value to a location without a measured
record using average weighted values measured from neighboring sta-
tions. Nearest-neighbor, inverse-distance weighting (IDW) and kriging
have been often used and compared. The definition of neighbors and
the weighting schemes differ among methods (Wong et al., 2004; Xie
et al., 2017). While the performance of such methods does not differ
tremendously (Son et al., 2010; Wong et al., 2004), IDW and kriging are
the most frequently used due to their sophistication in assigning spatial
weights (Xu et al., 2014). In the former, weights are defined as an in-
verse function of the distances between the existing monitoring stations
within a search radius, while in the latter weights are defined by the
distance as well as the spatial autocorrelation (Ellen, 2004; Xie et al.,
2017). Some researchers chose IDW over kriging (Azpurua & Ramos,
2010; Beckerman et al., 2012), and others did the opposite (Finkelstein,
Jerrett, & Sears, 2005; Künzli et al., 2004) because performance differs
largely by the local contexts (Xu et al., 2014). The disadvantage of this
approach is the lack of consideration of environmental factors such as
land use, traffic features, and the meteorological conditions of the
surrounding areas (Xie et al., 2017).

Third, regression, especially land use regression (LUR) is a statistical
strategy under an assumption that the local concentration of pollutants
is affected by the locational characteristics (Marshall, Nethery, &
Brauer, 2008; Xie et al., 2017). LUR has gained increasing popularity
for studies of long-term health effects of air pollution in complex urban
or neighborhood settings (Gulliver, de Hoogh, Fecht, Vienneau, &
Briggs, 2011). To achieve modeling superiority in addressing detailed
locational conditions, LUR requires intensive geographic data. Also, due
to the multiple regression technique that LUR is based on, a small
sample size or violations of the assumption of linearity would lead to
biased results (Xie et al., 2017).

Last, atmospheric chemistry and transport models are used in pre-
dicting concentrations of pollutants. One of the most frequently used
models is three-dimensional Community Multi-scale Air Quality
(CMAQ), developed by the U.S. Environmental Protection Agency
(EPA) in the 1990s. CMAQ simulates emission, transformation, and
transportation of several air pollutants, such as ozone, nitrogen oxides,
and PM (De Visscher, 2013); it thus requires meteorological, emission,
and chemical transport modeling components coupled in system (U.S.
EPA, n.d.; Marshall et al., 2008). The model produces grid-based pre-
dictions at various resolutions, ranging from 2 to 36 km, but there is no
consensus on which performs better in assessing exposure. The strength
of the method lies in its ability to consider weather conditions and to
simulate interactions of multiple air pollutants simultaneously (Jiang &
Yoo, 2018; Thompson & Selin, 2012).

3. Analytical design

3.1. Research questions

This study investigates whether (and if so, how much) the level of
PM10 affected the sales revenue of restaurant and recreational busi-
nesses in Seoul, South Korea, from April 2015 to February 2017, using
time-series GAM. We hypothesize that on a day of a higher PM10level,
people would reduce outdoor activities, which might result in less
consumption at recreational and food retail business establishments.
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3.2. Data and sample

The study site is in Seoul, the capital of South Korea. More speci-
fically, we focused on 500-m buffer areas surrounding the PM mon-
itoring stations in the city. One or two stations are located in each of the
25 wards, for a total of 39 (Air Korea, n.d.). The average distance be-
tween two neighboring stations is 2050m, and the average coverage of
a station is 11.69 km2. We used measured data under the assumption
that people tended to rely on the PM level reported at local monitoring
stations when deciding whether they would refrain from going out.

In Korea, two datasets have been mainly used to draw the attention
of the general population to the issue of PM level. For PM forecasting on
TV or radio, modeled values (predicted value) are used. An air quality
or dispersion modeling system called Korean Air Quality Forecasting
System (KAQFS) is used to make predictions for four times each day (5
a.m., 11 a.m., 5 pm, and 11 pm), covering two consecutive days. While
the spatial resolution is 3 km for Seoul Metropolitan Area, the fore-
casting is made with values aggregated at the city level (Anitech, n.d.).
For the warning system, measured values are used. The measured value
is aggregated to an average for a city or province, since those jur-
isdictional units announce the warning across the board. Finally, for
real-time information provision, available from smartphone applica-
tions and the website of the Korean Environment Corporation, the
measured data is used without interpolation (Air Korea, n.d.).

The measured data may be the best choice for our study's purposes,
because it is reported to and understood by the general public through
the aforementioned sources. Real-time information especially might be
frequently accessed by the people. As of the end of 2017, 96% of the
entire population in South Korea owned a smartphone (Poushter,
Bishop & Chew, 2018), and the most frequently downloaded applica-
tion in Korea is one related to PM (Lee, 2018). Also, measured data has
the most fine-grained spatial and time resolution.

However, we did not rule out the possibility that people indeed
reacted to the actual level of PM physically, as well as to the reported
PM psychologically, and thus we limited our site to the 500-m buffer
around the monitoring stations (Fig. 1). The area of homogeneous
pollutant level varies by local contexts, as mentioned in the literature
review section, and in some cases locations just 2 km apart display a
substantially different air pollution condition (Wilson, Kingham, &
Sturman, 2006). Conservatively, we limited the area of investigation to
the 1000-m radius around each monitoring center and conducted sen-
sitivity analyses for the four options 1000m, 700m, 500m and 300m.
While the non-parametric PM10 plot of the first three different radii
suggested pretty similar results, that of the 1000-m buffer displayed a
different trajectory from the rest. We concluded that the customers’
response to PM is homogeneous up to a 700-m distance. The fit is better
with a smaller buffer radius; however, a larger buffer embraces more
diversified food and recreational business establishments. Considering
this trade-off, we chose the 500-m buffer.

The first primary dataset is the record of retail revenues collected by
SK Telecom Geovision, a private telecommunication company. The data
include the hourly transaction amounts of one major credit card for
which the market share has not changed drastically within a short time.
From this dataset, we used sales revenues incurred in restaurant and
recreational business establishments in the aforementioned 500-m
buffer areas around the stations. Recreational businesses include indoor
and outdoor game rooms, sports facilities, museums, auditoriums, and
theaters.

The second primary dataset is the record of air quality measured at
39 stations in Seoul, collected by Korea Environment Corporation. The
air-quality data comprises hourly average levels of PM10, along with
ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur
dioxide (SO2). We also included weather information because of its
effects on shopping activities as well as its interactive effects on PM. We

obtained weather information, measured at 29 stations in Seoul, from
the Korea Meteorological Administration. The weather data comprised
hourly averages of temperature, wind speed, and precipitation.

4. Analytical plan and methods

4.1. Generalized additive model

The GAM is an extended version of the GLM to achieve precise
predictions. Like the GLM, the GAM links the non-normal dependent
variable with a linear combination of covariates, some or all of which
are replaced by non-linear and non-parametric smooth functions. To
enable estimations of parameters related to the question predictors, we
can additionally mix those with parametric model terms (Wood, 2006).

The link function transforms the dependent variable in order to
linearly relate it to the set of covariates; consequently, its type is de-
termined by the probability distribution of the dependent variable. For
continuous dependent variables, Gaussian, inverse Gaussian, and
gamma distributions have been frequently assumed, each of which
specifies a unique relationship between the mean and variance. The
associated link functions are identity, log, inverse, or inverse-square
(Ng & Cribbie, 2017).

The non-parametric function, also called the smooth function, is a
flexible specification of a relationship between the dependent variable
and the covariates without parametrization (Neuberger et al., 2004;
Wood, 2006). Diverse types of smoothers are used to form the smooth
function, among which two are tried here: thin plate regression splines
and cubic regression splines. The former have been frequently chosen
for their advantages in minimizing squared residuals and increasing
precision in predictions. In addition, in cases without clear prior
knowledge of their functional form and knot locations, this type finds
an optimal solution balancing the fidelity to the data and smoothness of
the function. The cubic regression spline, on the other hand, assumes a
modest number of evenly distributed knots throughout the value of
covariates, and it thus can confer advantages in computation (Wood,
2006).

4.2. Models and variables

We specify GAM models with gamma distribution and log link
function. The spatial analytical unit is the smallest census unit, called
Soguyok in Korean, and the time resolution is a day. The dependent
variable is the total daily sales revenue of restaurants and recreational
businesses incurred in the study sites, in Korean won, aggregated by the
analytical unit (Sales_Rev). We excluded census units that contained
fewer than 20 business establishments, as those are possibly in close
proximity to residential areas, and using them would not involve sub-
stantial travel. The final sample size was 319,958. The revenue is
skewed positively and has a variance increasing along with the value,
which can be approximated with a gamma distribution (Fig. 2(1)). The
main question variable is the daily maximum level of PM10 in incre-
ments of 10 μg per cubic meters, 10 μg/m3 (PM10). This level also fol-
lows a gamma distribution (Fig. 2(2)).

We also consider the time lags between the dependent and question
variables. The sales revenue displays a strong weekly cycle, and cyclical
changes might be falsely associated with the PM level. Therefore, we
first excluded lags longer than seven days. We further excluded fourth-
to sixth-lags due to their remoteness from the current time. It is hard to
believe that bad air quality of four to six days ago would affect today's
recreational and dining activities. We selected the first- and second-
order lags for their relatively stronger serial correlation with the current
level of PM, 0.411 and 0.251, respectively. Then we further excluded
the first lag due to the lack of explanatory power in the modeling
process. All of these preliminary analytical results are available upon
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request from the corresponding author.
Other air pollutants considered together are ozone (PLT1; ppm),

sulfur dioxide (PLT2; ppm), and carbon monoxide (PLT3; ppm) because
some of them are known as precursors of PM formation and exacerbate
poor air quality by interactions with PM. Nitrogen dioxide is excluded
for its strong correlation with carbon monoxide (0.705) and sulfur di-
oxide (0.577). Weather conditions included in the analysis are daily
average temperature (WTH1; Celsius), daily average wind speed (WTH2;

m/s), and total precipitation in a day (WTH ;3 mm). For a time indicator,
we specified the cumulative number of days from April 1, 2015, to
February 28, 2017 (TIME). Also included are some of the widely known
seasonality and weekly sales patterns as dummy variables: the day of a
week from Thursday to Tuesday (DAY1 to DAY6; Wednesday is the re-
ference) and the season of each year (spring, March to May; summer,
June to August; fall, September to November; and winter, December to
February; TRND2 to TRND7). To control for the retail location

Fig. 1. The study site, showing the census units in the analyses and locations of weather and air-quality monitoring stations.

Fig. 2. Distribution of the PM concentration and sales revenue.
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characteristics of each area defined by the 500-m buffer around the
monitoring stations and the scale effects of retail agglomerations, we
specified a variable indicating the total number of restaurants measured
every month (NUM_ REST) as a proxy. Descriptive statistics are pre-
sented in Appendix A.

Without certainty about the nature of the relationships between
PM10-related variables and sales revenue, we adopted a twofold mod-
eling process. In the first preliminary modeling, we relaxed linearity
assumptions and specified PM10-related variables as flexible smooth
functions. In the second modeling, after gaining clues about the nature
of the relationship, we constructed a parametric form with PM-related
variables to interpret the magnitude and direction of their effects on the
dependent variable. The air pollutant and weather variables were
treated as smooth functions for the same reason but without further
parametrization in the second modeling process to keep their roles as
covariates. While the time variable is also specified as a smooth func-
tion, the day of a week and seasonality are also included in the model as
dummy variables. The final two modeling strategies are presented
below as Models (1) and (2); three versions of each are fitted using
differing smoothers.

For a census unit (i) around the air pollution monitoring station (j)
or weather station (h) and time (t),
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Under Model (2), Model (2-1), Model (2-2), and Model (2–3) are
fitted using the thin plate regression spline smoother, cubic regression
spline with 10 knots, and cubic regression spline with 20 knots, re-
spectively.

5. Results

5.1. PM as smooth functions

The fit statistics of the three models in Model (1) are presented in
Table 1.

The results suggest that the model with a 20-knot cubic regression
spline smoother (1–3) has the highest explanatory power (the highest
deviance explained) and the best fit (the lowest AIC and GCV score)
among the three, but it consumes the highest number of degrees of
freedom, making the smooth function less legible and interpretable.
The thin plate regression spline model (1-1) is ranked in the middle,
and the model with a 10-knot cubic regression spline smoother (1–2) is
the worst in terms of both criteria. Considering the small difference of
the fit scores between Models (1-1) and (1–3) and the obvious ad-
vantages that come from the parsimonious model specification, we
selected the thin plate regression spline smoother for the final model.

The results suggest non-linear relationships between the PM-related
variables and the response variable. For the current level of PM10, the
relationship seems roughly like a cubic curve, although the degree of
freedom is 6.72, representing that the curve wiggles more than a
normal cubic curve (Fig. 3(1)). Sales revenue increases rapidly along
with the increment of PM10 until the first inflection point, at around
41 μg/m3, and it then again increases thereafter with a smaller rate.
After 109 μg/m3, revenue begins to decrease until 245 μg/m3 and then
curves up again. The 95% confidence interval (CI) becomes quite wide
around 200 μg/m3, calling the precision into question.

The two-day lag of PM10 has a similar but relatively less drastic ef-
fect on the revenue (Fig. 3(2)). The relationship could also be illustrated
as a cubic curve, whereby the level of past PM10 is positively associated
with sales revenue up to 121 μg/m3, followed by the negative re-
lationship up to 227 μg/m3. Sales revenue then increases with a de-
creasing rate. However, as in the previous result, as the 95% CI grows
wider and contains the zero point, the statistical significance of the
result becomes uncertain for this segment.

5.2. PM as parametric terms

In the second model, we constructed parametric functional com-
ponents with the PM-related variables and included them in the model.
The trajectory of the relationship revealed in the previous models led us
to explore a linear function with interaction terms at the prominent
knots. As before, the three modeling options have been tried; for the
same reasons, we select Model (2–1) as the final choice. The results are
presented below in Table 2.

First, for the current effects, the PM10, interaction, and binary terms
for the point 41 and 109 μg/m3 have a statistically significant re-
lationship with the response variable at the 0.1 percent level while
those related to the point 245 μg/m3 do not, confirming the effect of PM
changes at the first two junctions. When the PM10 level is lower than
41 μg/m3, a 10 μg/m3 increase of the daily highest PM10 is associated
with an incremental increase of sales revenue by 3.8% (Coeff.= 0.038,
p=0.00), controlling for the factors of business, time, weather, and
other pollutants. The increasing rate is much reduced on the segment
between 41 μg/m3 and 109 μg/m3, in that every 10 μg/m3 increase of

Table 1
Fit statistics of the three GAM models with PM10 variables as smooth functions.

Smoothers df Akaike Information Criterion (AIC) Generalized Cross Validation score (GCV) Deviance Explained

Model (1–1)
Thin plate regression spline

86.077 11,062,709 0.903 33.9%

Model (1–2)
Cubic regression spline (10 knots)

83.073 11,062,723 0.903 33.9%

Model (1–3)
Cubic regression spline (20 knots)

166.679 11,062,168 0.902 34.1%
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the daily highest PM10 is associated with an incremental increase of
sales revenue by 0.3% (Coeff. = 0.035, p=0.00; 0.038–0.035).

It is not intuitively clear why increasing revenues are associated
with the increasing levels of PM. One plausible reasoning might be that
the influences between those two variables are reciprocal. The incre-
ment of revenue might be a consequence of increasing PM10 levels while
the latter is also a consequence of the former. Many studies including
Saenz-de-Miera and Rosselló (2014 & 2013) corroborate this argument;
a large volume of people contributed to the higher concentration of
PM10. Regardless of the applicability of the argument in this specific
case, we can infer that, at least on average, people are indifferent about
the PM10 concentration until the level gets worse than the “Bad” cate-
gory (from 81 to 150 μg/m3). This relationship changes after the PM10
level exceeds 109 μg/m3. In that range, every additional 10 μg/m3 in-
crease of PM10 is associated with an incremental decline of sales revenue
by −1.2% (Coeff.= 0.05, p=0.00; 0.038–0.050). It can be inferred that
from this point on, people begin to react and refrain from going out to
eat and engaging in recreational activities.

Second, for the effect of PM10 two days prior to the sales revenue, a
consistent pattern is observed, as previously. The past daily maximum
PM10 level, interaction, and binary terms for the point 121 μg/m3 have a
statistically significant relationship with the response variable at the 0.1
percent level, while those factors related to 227 μg/m3 do not, also
confirming that the past PM10 exerts differing influences on sales rev-
enue according to PM levels. Every 10 μg/m3 increase of daily highest
PM10 level of the two preceding days is associated with a 0.5% (Coeff.=
0.005, p=0.00) higher sales revenue of today. When the daily highest
PM10 level is over 121 μg/m3, every 10 μg/m3 increase of the PM10 level
is associated with a −1.2% (Coeff. = -0.012, p=0.00; 0.005–0.017)
incremental decline of the revenue two days later. The sales revenue of
the day after the high PM10-level day might have been affected as well;
however, due to the high serial correlation, we could not reveal such
effects directly with our modeling. The moderate serial correlation of
the PM10 and L2_PM10 makes it possible to apply the aforementioned
reasoning in explaining the positive relationship with sales revenue in
this case.

Although it is beyond the scope of this study to reveal why the ef-
fects of the current and past PM10 change direction at 109 μg/m3 and

121 μg/m3, respectively, we speculate that people rely on the quality
criteria established by the government in taking action relative to
ambient air pollution. Their belief might be that it would be safe to be
outside until the concentration reaches the Bad level, and that they
should be careful in doing outdoor activities once the quality becomes
worse than the Bad level. It is also possible that people indeed worry
and refrain from undertaking substantial outdoor activities even on a
day of moderately Bad PM concentration, but they still conduct minor
outdoor activities such as eating out. They might think that they do not
stay outside long enough to be harmed, as they can be seated inside if
they wish at almost any restaurant.

Other pollutants also affect restaurant sales revenue, possibly
through changes in human behaviors. Ozone is the other ambient air
pollutant about which the government issues warnings, along with PM10
and PM2.5. Interestingly, a similar pattern was observed. The revenue
increases along with the incremental increase of ozone concentration
until the level reaches approximately 0.12 ppm; then it reverses direc-
tion and declines thereafter (Fig. 4(1)). Public alerts begin at the
0.12 ppm level.

Other covariates also affect sales revenue. First, timing matters.
Sales revenues displayed an apparent seasonality over a year, with the
highest value in July and August of 2015; revenues declined thereafter,
reaching the lowest point on February of 2016 (Fig. 4(2)). One more
cycle repeated the following year with a lesser amplitude. This finding
reflects that restaurant and recreational businesses thrive during the
summer in general and slow in the winter seasons (Higuera, 2018).
Also, by including the time function in the model, we could successfully
control such seasonal business effects. For that reason, five of the seven
seasonal dummy variables present a statistically significant relationship
with sales revenues. Weekend effects were also observed as 9.8% and
11.1% higher revenues on Saturday and Sunday than those on Wed-
nesday. Second, as might be expected, the number of stores affects the
amount of revenue. Each additional restaurant is associated with a
2.8% higher total revenue in a census unit (Table 2).

Third, weather conditions influence sales revenues as well. Fig. 4(3)
illustrates that overall the restaurant businesses gain higher revenues
on cold days than on warm days. This result conflicts with the results of
previous findings that temperature is positively associated with the

Fig. 3. Estimated smooth function and 95% CI of the current (PM10) and past PM (L2_PM10) on retail revenue.
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tourism-related sales revenues (Goh, 2012; Lise & Tol, 2002; Maddison,
2001; Wilton & Wirjanto, 1998), as well as the results of the current
analysis for time and seasonality variables described above. Our un-
expected results might be due not to substantive phenomenon in regard
to restaurant businesses but to the statistical setting in this study. Due to
the presence of some level of multicollinearity, the temperature effect
might turn out to be the opposite of what it is in reality (Adeboye,
Fagoyinbo, & Olatayo, 2014). To corroborate our claim, we tried an-
other model without the seasonality variables and observed that the
effect of temperature on sales revenue changed as have been expected;
sales revenue increases with the increment of the temperature until 30
degrees Celsius (Maddison, 2001). Wind speed and restaurant sales
revenue exhibit a non-linear relationship as well (Fig. 4(4)). The
function resembles a parabolic curve, which agrees with the results of
the study in Spain (Saenz-de-Miera & Rosselló, 2014). As reasoned in
that study, strong wind would dissipate the dust accumulation. If
people noticed this dissipation, they might believe that the negative
effects of high PM10 concentration had been offset. Finally, precipitation
negatively affects restaurant sales revenues in general, but in a non-
linear fashion (Fig. 4(5)).

6. Conclusion and discussion

In this study, we examined the effects of PM10 concentration on
tourism retail sales revenues, through the case of Seoul's restaurants
and recreational service businesses from April 2015 to February 2017.
We adopted a twofold GAM strategy; in the first exploratory modeling,
we specified the PM-related variables as smooth functions and derived
inflection points of the trajectories. In the second model, we para-
metrized the line segments with interaction terms to estimate the ef-
fects' size and direction.

The study confirms that the level of PM10 and sales revenues in the
tourism industry exhibit a statistically significant relationship in a non-
linear fashion. People begin to alter their consumption related to dining
and recreation activities only after the PM10 level becomes worse than
the “Bad” level. When the PM10 level is “Good” or “Normal” up to some
low value of the “Bad” category, its concentration has a positive re-
lationship with sales revenue. When the level exceeds that point, the
relationship becomes negative. The turning points are at 109 μg/m3 and
121 μg/m3 for the PM10 level of today and the day before yesterday,
respectively. In the case of today's PM10 level, every 10 μg/m3 increase

Table 2
Parameter estimates, standard errors, and approximate p-values from the semi-
parametric GAM models (Models (2–1) and (3–1)), describing the relationships
between log of daily sum of sales revenue by the census unit and the daily
maximum PM10 level.

Variable Model (2–1) Model (2-2) Model (2–3)

PM as
parametric
terms; Thin
plate
regression
spline

PM as
parametric
terms; Cubic
regression
spline with 20
knots

PM as
parametric
terms; Cubic
regression
spline with 10
knots

Question Variable
PM10 0.038***

(0.001)
0.037***
(0.006)

0.038***
(0.006)

PM10_OVER41 0.125*** 0.125*** 0.124***
(0.021) (0.021) (0.021)

Int_PM10_OVER41 −0.035*** −0.034*** −0.034***
(0.006) (0.006) (0.006)

PM10_OVER109 0.291*** 0.290*** 0.294***
(0.036) (0.036) (0.036)

Int_PM10_OVER109 −0.050*** −0.049*** −0.050***
(0.006) (0.006) (0.006)

PM10_OVER245 −0.175 −0.176 −0.161
(0.509) (0.509) (0.509)

Int_PM10_OVER245 −0.029 −0.029 −0.029
(0.020) (0.020) (0.020)

L2_PM10 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001)

L2_PM10_OVER121 0.218*** 0.216*** 0.208***
(0.044) (0.043) (0.044)

Int_L2_PM10_OVER121 −0.017*** −0.017*** −0.016***
(0.003) (0.003) (0.003)

L2_PM10_OVER227 0.047 0.041 0.012
(0.376) (0.375) (0.375)

Int_L2_PM10_OVER227 −0.005 −0.004 −0.003
(0.014) (0.014) (0.014)

Business/time var.
NUM_ REST 0.028*** 0.028*** 0.028***

(0.000) (0.000) (0.000)
f(TIME) 8.750*** 8.690*** 18.560***

(8.977) (8.967) (18.970)
SEASON2 −0.130*** −0.127*** −0.048*
June to Aug. 2015 (0.018) (0.018) (0.027)
SEASON3 −0.152*** −0.148*** −0.017
Sept. to Nov. 2015 (0.025) (0.025) (0.036)
SEASON4 −0.075** −0.076** −0.072
Dec. 2015 to Feb. 2016 (0.031) (0.031) (0.047)
SEASON5 −0.001 −0.002 −0.042
March to May 2016 (0.036) (0.036) (0.053)
SEASON6 −0.028 −0.037 −0.092
June to Aug. 2016 (0.040) (0.040) (0.060)
SEASON7 −0.121*** −0.121*** −0.201***
Sept. to Nov. 2016 (0.045) (0.045) (0.007)
SEASON8 −0.116** −0.122** −0.202***
Dec. 2016 to Feb. 2017 (0.048) (0.048) (0.006)
DAY1 0.006 0.006 0.009
Thursday (0.007) (0.007) (0.007)
DAY2 0.029*** 0.030*** 0.030***
Friday (0.007) (0.007) (0.007)
DAY3 0.098*** 0.098*** 0.100***
Saturday (0.007) (0.007) (0.007)
DAY4 0.111*** 0.111*** 0.113***
Sunday (0.007) (0.007) (0.007)
DAY5 −0.103*** −0.102*** −0.098***
Monday (0.007) (0.007) (0.007)
DAY6 −0.135*** −0.133*** −0.133***
Tuesday (0.007) (0.007) (0.007)
Pollutant/weather var.
f(PLT1); ozone 7.328*** 7.146*** 17.760***

(8.061) (8.023) (18.58)
f(PLT2); sulfur dioxide 6.313*** 6.726*** 16.140***

(7.702) (7.611) (17.400)
f(PLT3); carbon monoxide 8.857*** 8.217*** 18.000***

(8.987) (8.655) (18.650)

Table 2 (continued)

Variable Model (2–1) Model (2-2) Model (2–3)

PM as
parametric
terms; Thin
plate
regression
spline

PM as
parametric
terms; Cubic
regression
spline with 20
knots

PM as
parametric
terms; Cubic
regression
spline with 10
knots

f(WTH1); temperature 8.450*** 8.065*** 13.890***
(8.919) (8.766) (16.190)

f(WTH2); wind speed 8.535*** 8.041*** 18.190***
(8.927) (8.746) (18.900)

f(WTH3); precipitation 7.600*** 6.595*** 14.500***
(8.370) (7.554) (16.450)

Intercept 15.430*** 15.430*** 15.430***
(0.034) (0.034) (0.047)

Summary and Goodness-of-fit
Observations 319,958 319,958 319,958
df 83.833 81.481 145.047
Deviance Explained 33.9% 33.9% 34.1%
AIC 11,062,704 11,062,721 11,062,205
GCV 0.903 0.903 0.902

Standard errors or degree of freedom in parentheses ***p < 0.01, **p < 0.05,
*p < 0.1
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is associated with an incremental increase of sales revenue by 3.8% up
to 41 μg/m3 and by 0.3% up to 109 μg/m3. Thereafter, the same in-
crease is associated with an incremental decrease of sales revenue by
−1.2%. In the case of a two-day lag in the PM10 level, every 10 μg/m3

increase is associated with an incremental increase of sales revenue by

0.5% up to 121 μg/m3. Thereafter, the same increase is associated with
an incremental decrease of sales revenue by −1.2%.

This result contributes to the literature in two ways. First, while the
effects of PM levels have been the topic of a large amount of research,
this study was the first attempt to investigate those effects on retail sales

Fig. 4. Estimated smooth function and 95% CI of the time and weather covariates on retail revenue.
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revenues in the tourism industry at large. Second, the twofold modeling
strategy enabled us to reveal a unique non-linear relationship between
the PM level and sales revenues, which is new to the literature. In other
relevant studies, the PM level has usually been treated as a parametric
term as if its effect is constant throughout the entire level (An & Yu,
2018; Chen et al., 2017; Garrett & Casimiro, 2011). However, it might
be more sensible to consider human factors in the mechanism of per-
ceiving and responding to the risk and to design a statistical model
accordingly. People may be aware of the threat in general, but the
points at which they take appropriate adaptive behavior differs from
individual to individual (Kalkstein & Sheridan, 2007). Collective be-
havioral patterns would generate a tipping point at which the coun-
teraction becomes visible in the general population.

Such findings provide evidence for policy implications concerning
air quality and monitoring systems. People do react to air quality in
light of the quality standards established by the public authority. Given
the analytical results of this study, it is possible that the Bad category is
the threshold at which people begin altering some of their outdoor
activities. However, it should be noted that there is no safe level of PM
concentration to be exposed to, and even a low level of PM would cause
adverse health effects (Cassee, Héroux, Gerlofs-Nijland, & Kelly, 2013;
Zwozdziak et al., 2016). Especially in South Korea, relatively loose
standards are applied. The Bad grade is from 81 to 150 μg/m3 in Korea;
however, the equivalent grade given by the WHO is from 51 to 100 μg/
m3 (Ministry of the Environment, 2016). A part of the Bad range—from
81 to 100 μg/m3—in the world standards is considered normal by
Korean standards. This discrepancy may give Korean people a false
sense of safety about being outside on a day with such PM concentra-
tions, which world standards do not consider safe. This gap holds for
other countries under similar conditions.

It might be wise to impose air-quality criteria as strictly as possible
if the health risk is the only concern. Although human health should be
prioritized, other issues should also be considered in enacting policies.
While numerical evidence on health effects is abundant, less evidence
has been supplied to understand the effects on other economic sectors,
simply due to the lack of analysis. Considering the entire sales revenue
generated from all product and service types with all means of

payments, the magnitude of the PM effects on the retail sector could be
substantial. These effects should not be neglected in assessing the social
cost incurred by PM. Well-balanced standards should be sought to en-
sure a maximum level of health safety and not depress tourism busi-
nesses and industries. Along with regulating emissions and the forma-
tion of PM, the improvement of public spaces should be accompanied
by minimized exposure to ambient air and purified indoor and outdoor
air (Kroeger, McDonald, Boucher, Zhang, & Wang, 2018), so people can
keep enjoying tourism activities safely.

This study has some limitations. First, the gap between the actual
PM10 level and the one monitored at the stations limits the inference of
the analytical results to the people's response to the perceived risk of
PM concentration. In the analyses, we assumed that the level of PM10
reported through media is the one that people would react to. Such a
level, however, might have differed from the actual PM10 level that
people are exposed to in the buffer around a station. With more ad-
vanced technologies in interpolation and simulation, we could analyze
the effects of the actual PM10 level on sales revenues, since people may
recognize the bad air quality through their own sensory experiences
(Bickerstaff & Walker, 2001). Second, the causal direction between the
PM level and amount of foot traffic is uncertain. Due to the reciprocal
relationship, the revealed effect of PM level on sales revenue might be
convoluted. Further study is warranted to investigate the function of
impulse-response between those two time-series in finer time units.
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Appendix A. Descriptive statistics

Variable Obs. Unit Mean Std. Dev. Min. Max.

Sales_Rev 332,402 KRW 1.50e+07 2.81e+07 9590.25 6.46e+08
PM10 332,402 10 μg/m3 6.931 3.355 0.400 31.800
Ozone 331,142 ppm 0.037 0.024 0.000 0.178
Sulfur dioxide 329,764 ppm 0.007 0.002 0.000 0.030
Carbon monoxide 330,642 ppm 0.798 0.336 0.000 2.900
Temperature 332,402 Celsius 15.119 10.805 −14.964 34.279
Wind speed 332,402 m/s 1.692 0.741 0.000 6.186
Precipitation 332,402 mm/day 1.426 6.361 0.000 123
NUM_ REST 332,402 EA. 27.704 54.096 11 10,001
TIME 332,402 Day 360.551 200.282 1 700
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